Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pathogens ; 11(8)2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1979329

ABSTRACT

AIMS: We investigate how fasting blood glucose (FBG) levels affect the clinical severity in coronavirus disease 2019 (COVID-19) patients, pneumonia patients with sole bacterial infection, and pneumonia patients with concurrent bacterial and fungal infections. METHODS: We enrolled 2761 COVID-19 patients, 1686 pneumonia patients with bacterial infections, and 2035 pneumonia patients with concurrent infections. We used multivariate logistic regression analysis to assess the associations between FBG levels and clinical severity. RESULTS: FBG levels in COVID-19 patients were significantly higher than in other pneumonia patients during hospitalisation and at discharge (all p < 0.05). Among COVID-19 patients, the odds ratios of acute respiratory distress syndrome (ARDS), respiratory failure (RF), acute hepatitis/liver failure (AH/LF), length of stay, and intensive care unit (ICU) admission were 12.80 (95% CI, 4.80-37.96), 5.72 (2.95-11.06), 2.60 (1.20-5.32), 1.42 (1.26-1.59), and 5.16 (3.26-8.17) times higher in the FBG ≥7.0 mmol/L group than in FBG < 6.1 mmol/L group, respectively. The odds ratios of RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with sole bacterial infection (3.70 [2.21-6.29]; 1.56 [1.17-2.07]; 0.98 [0.88-1.11]; 2.06 [1.26-3.36], respectively). The odds ratios of ARDS, RF, AH/LF, length of stay, and ICU admission were increased to a lesser extent in pneumonia patients with concurrent infections (3.04 [0.36-6.41]; 2.31 [1.76-3.05]; 1.21 [0.97-1.52]; 1.02 [0.93-1.13]; 1.72 [1.19-2.50], respectively). Among COVID-19 patients, the incidence rate of ICU admission on day 21 in the FBG ≥ 7.0 mmol/L group was six times higher than in the FBG < 6.1 mmol/L group (12.30% vs. 2.21%, p < 0.001). Among other pneumonia patients, the incidence rate of ICU admission on day 21 was only two times higher. CONCLUSIONS: Elevated FBG levels at admission predict subsequent clinical severity in all pneumonia patients regardless of the underlying pathogens, but COVID-19 patients are more sensitive to FBG levels, and suffer more severe clinical complications than other pneumonia patients.

2.
Front Endocrinol (Lausanne) ; 12: 791476, 2021.
Article in English | MEDLINE | ID: covidwho-1581361

ABSTRACT

Background: We aimed to understand how glycaemic levels among COVID-19 patients impact their disease progression and clinical complications. Methods: We enrolled 2,366 COVID-19 patients from Huoshenshan hospital in Wuhan. We stratified the COVID-19 patients into four subgroups by current fasting blood glucose (FBG) levels and their awareness of prior diabetic status, including patients with FBG<6.1mmol/L with no history of diabetes (group 1), patients with FBG<6.1mmol/L with a history of diabetes diagnosed (group 2), patients with FBG≥6.1mmol/L with no history of diabetes (group 3) and patients with FBG≥6.1mmol/L with a history of diabetes diagnosed (group 4). A multivariate cause-specific Cox proportional hazard model was used to assess the associations between FBG levels or prior diabetic status and clinical adversities in COVID-19 patients. Results: COVID-19 patients with higher FBG and unknown diabetes in the past (group 3) are more likely to progress to the severe or critical stage than patients in other groups (severe: 38.46% vs 23.46%-30.70%; critical 7.69% vs 0.61%-3.96%). These patients also have the highest abnormal level of inflammatory parameters, complications, and clinical adversities among all four groups (all p<0.05). On day 21 of hospitalisation, group 3 had a significantly higher risk of ICU admission [14.1% (9.6%-18.6%)] than group 4 [7.0% (3.7%-10.3%)], group 2 [4.0% (0.2%-7.8%)] and group 1 [2.1% (1.4%-2.8%)], (P<0.001). Compared with group 1 who had low FBG, group 3 demonstrated 5 times higher risk of ICU admission events during hospitalisation (HR=5.38, 3.46-8.35, P<0.001), while group 4, where the patients had high FBG and prior diabetes diagnosed, also showed a significantly higher risk (HR=1.99, 1.12-3.52, P=0.019), but to a much lesser extent than in group 3. Conclusion: Our study shows that COVID-19 patients with current high FBG levels but unaware of pre-existing diabetes, or possibly new onset diabetes as a result of COVID-19 infection, have a higher risk of more severe adverse outcomes than those aware of prior diagnosis of diabetes and those with low current FBG levels.


Subject(s)
Blood Glucose/metabolism , COVID-19/blood , Adult , Aged , Aged, 80 and over , Fasting/blood , Female , Hospitalization , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Factors
3.
Sci Rep ; 11(1): 4145, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1091456

ABSTRACT

The pandemic of Coronavirus Disease 2019 (COVID-19) is causing enormous loss of life globally. Prompt case identification is critical. The reference method is the real-time reverse transcription PCR (RT-PCR) assay, whose limitations may curb its prompt large-scale application. COVID-19 manifests with chest computed tomography (CT) abnormalities, some even before the onset of symptoms. We tested the hypothesis that the application of deep learning (DL) to 3D CT images could help identify COVID-19 infections. Using data from 920 COVID-19 and 1,073 non-COVID-19 pneumonia patients, we developed a modified DenseNet-264 model, COVIDNet, to classify CT images to either class. When tested on an independent set of 233 COVID-19 and 289 non-COVID-19 pneumonia patients, COVIDNet achieved an accuracy rate of 94.3% and an area under the curve of 0.98. As of March 23, 2020, the COVIDNet system had been used 11,966 times with a sensitivity of 91.12% and a specificity of 88.50% in six hospitals with PCR confirmation. Application of DL to CT images may improve both efficiency and capacity of case detection and long-term surveillance.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/diagnosis , Tomography, X-Ray Computed/methods , COVID-19/epidemiology , COVID-19/metabolism , China/epidemiology , Data Accuracy , Deep Learning , Humans , Lung/pathology , Pneumonia/diagnostic imaging , Retrospective Studies , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL